LPS Structure and PhoQ Activity Are Important for Salmonella Typhimurium Virulence in the Gallleria mellonella Infection Model
نویسندگان
چکیده
The larvae of the wax moth, Galleria mellonella, have been used experimentally to host a range of bacterial and fungal pathogens. In this study we evaluated the suitability of G. mellonella as an alternative animal model of Salmonella infection. Using a range of inoculum doses we established that the LD₅₀ of SalmonellaTyphimurium strain NCTC 12023 was 3.6 × 10³ bacteria per larva. Further, a set of isogenic mutant strains depleted of known virulence factors was tested to identify determinants essential for S. Typhimurium pathogenesis. Mutants depleted of one or both of the type III secretion systems encoded by Salmonella Pathogenicity Islands 1 and 2 showed no virulence defect. In contrast, we observed reduced pathogenic potential of a phoQ mutant indicating an important role for the PhoPQ two-component signal transduction system. Lipopolysaccharide (LPS) structure was also shown to influence Salmonella virulence in G. mellonella. A waaL(rfaL) mutant, which lacks the entire O-antigen (OAg), was virtually avirulent, while a wzz(ST)/wzz(fepE) double mutant expressing only a very short OAg was highly attenuated for virulence. Furthermore, shortly after infection both LPS mutant strains showed decreased replication when compared to the wild type in a flow cytometry-based competitive index assay. In this study we successfully established a G. mellonella model of S. Typhimurium infection. By identifying PhoQ and LPS OAg length as key determinants of virulence in the wax moth larvae we proved that there is an overlap between this and other animal model systems, thus confirming that the G. mellonella infection model is suitable for assessing aspects of Salmonella virulence function.
منابع مشابه
Salmonella enterica serovar typhimurium-induced maturation of bone marrow-derived dendritic cells.
Murine bone marrow-derived dendritic cells (DC) can phagocytose and process Salmonella enterica serovar Typhimurium for peptide presentation on major histocompatibility complex class I (MHC-I) and MHC-II molecules. To investigate if a serovar Typhimurium encounter with DC induces maturation and downregulates their ability to present antigens from subsequently encountered bacteria, DC were pulse...
متن کاملIn vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence.
Many virulence factors are required for Salmonella enterica serovar Typhimurium to replicate intracellularly and proliferate systemically within mice. In this work, we have carried out genetic analyses in vivo to determine the functional relationship between two major virulence factors necessary for systemic infection by S. enterica serovar Typhimurium: the Salmonella pathogenicity island 2 (SP...
متن کاملAn Altered Immune Response, but Not Individual Cationic Antimicrobial Peptides, Is Associated with the Oral Attenuation of Ara4N-Deficient Salmonella enterica Serovar Typhimurium in Mice
Salmonella enterica serovar Typhimurium (S. Typhimurium) uses two-component regulatory systems (TCRS) to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS) modification ...
متن کاملCharacterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium.
The defensin sensitivities of Salmonella typhimurium strains with mutations in the phoP/phoQ two-component virulence regulon were tested by using purified defensins NP-1 and NP-2. Strains with mutations in either gene of the regulatory pair (phoP [transcriptional activator] or phoQ [membrane sensor kinase]) had increased sensitivities to defensin. The predicted periplasmic domain of the PhoQ pr...
متن کاملCationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo
Salmonella enterica serovar Typhimurium uses two-component regulatory systems (TCRSs) to respond to environmental stimuli. Upon infection, the TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals detected in the lumen of the intestine and within host cells. TCRS-mediated gene expression leads to upregulation of genes involved in lipopolysaccharide (LPS) modificat...
متن کامل